
Net-track: Generic Web Tracking Detection Using Packet
Metadata

Dongkeun Lee Minwoo Joo Wonjun Lee
dklee98@korea.ac.kr mw.joo@samsung.com wlee@korea.ac.kr
Korea University Samsung Research Korea University

Seoul, Republic of Korea Seoul, Republic of Korea Seoul, Republic of Korea

ABSTRACT
While third-party trackers breach users’ privacy by compiling large
amounts of personal data through web tracking techniques, com-
bating these trackers is still left at the hand of each user. Although
network operators may attempt a network-wide detection of track-
ers through inspecting all web trafc inside the network, their
methods are not only privacy-intrusive but of limited accuracy
as these are susceptible to domain changes or inefective against
encrypted trafc. To this end, in this paper, we propose Net-track, a
novel approach to managing a secure web environment through
platform-independent, encryption-agnostic detection of trackers.
Utilizing only side-channel data from network trafc that are still
available when encrypted, Net-track accurately detects trackers
network-wide, irrespective of user’s browsers or devices without
looking into packet payloads or resources fetched from the web
server. This prevents user data from leaking to tracking servers in
a privacy-preserving manner. By measuring statistics from trafc
traces and their similarities, we show distinctions between benign
trafc and tracker trafc in their trafc patterns and build Net-
track based on the features that fully capture trackers’ distinctive
characteristics. Evaluation results show that Net-track is able to
detect trackers with 94.02% accuracy and can even discover new
trackers yet unrecognized by existing flter lists. Furthermore, Net-
track shows its potential for real-time detection, maintaining its
performance when using only a portion of each trafc trace.

CCS CONCEPTS
• Security and privacy → Network security; • Networks → Net-
work privacy and anonymity; Network monitoring.

KEYWORDS
encrypted trafc analysis, machine learning, security management,
third-party tracker, web security

ACM Reference Format:
Dongkeun Lee, Minwoo Joo, and Wonjun Lee. 2023. Net-track: Generic Web
Tracking Detection Using Packet Metadata. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583372

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583372

1 INTRODUCTION
With the ever-increasing attention towards online privacy, protect-
ing users’ personal data has become a crucial issue in making a
secure web environment. While policies such as the ePrivacy Di-
rective (ePD) [32] or the EU General Data Protection Regulation
(GDPR) [31] have been implemented as a response, there still remain
factors threatening users’ data privacy [6, 21]. One of those main
threats are third-party trackers, commonly embedded in websites
visited by users in the form of advertisements or web beacons.

Third-party trackers breach users’ privacy by compiling large
amounts of personal data through web tracking techniques. These
trackers collect information such as the user’s location or browsing
history using cookies or device/browser fngerprinting. It has been
studied that there exist 22 trackers per site on average, with more
than 81,000 of them in total [13]. Along with the numerous eforts
made by the research community to combat trackers, the industry
now trends to integrate these privacy-protecting features into their
products (e.g., Mozilla Firefox [22], Apple Safari [4], or Brave [5]).

Still, this daunting task of privacy protection is left at the hand of
each user. A worried user may detect trackers loaded at his browser
based on the requested URL or by analyzing HTML/JavaScript codes.
Since URL-based approaches (e.g., [1, 14, 33, 37]) are easily evaded
by changing domains or using the frst-party domain as a proxy,
recent approaches (e.g., [8, 17, 18]) extract features from changes in
HTML structures or JavaScript attributes to detect tracking-related
resources. However, these approaches cannot be deployed across di-
verse platforms or devices as they require an instrumented browser
to perform their dynamic code analysis. This leads to fragmentation
in security management as users should individually consider their
settings to fnd a method viable for their own protection.

On the other hand, network operators in a security-critical or-
ganization (e.g., enterprise or military) may attempt a holistic ap-
proach that detects trackers by performing Domain Name System
(DNS) fltering or Deep Packet Inspection (DPI) against all web traf-
fc inside the network. Their methods are, however, limited in accu-
racy as DNS-based approaches (e.g., [2, 24]) are coarse-grained and
subject to evasions equal to those of URL-based approaches. More-
over, extracting features from HTTP headers or payloads with DPI
(e.g., [15, 28]) is not only privacy-intrusive but inefective against
encrypted trafc, making these approaches impractical in today’s
web environment where 79.8% of all websites use HTTPS as a de-
fault [34]. Overall, we are in a dilemma over putting the task of
tracker detection in charge of each user for better performance or
managing it as a whole for wider applicability.

To address this issue, we present Net-track, a novel ap-
proach to managing a secure web environment through platform-
independent, encryption-agnostic detection of trackers. Utilizing

2230

https://doi.org/10.1145/3543507.3583372
https://doi.org/10.1145/3543507.3583372
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583372&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lee et al.

Figure 1: Simplifed overview of a cookie-based tracker.

only side-channel data from network trafc that are still available
when encrypted, Net-track accurately detects trackers network-
wide, irrespective of user’s browsers or devices but does not re-
quire inspecting packet payloads or resources fetched from the web
server. This prevents user data from leaking to tracking servers in
a privacy-preserving manner. Although there have been diverse
studies on the potential of encrypted trafc analysis and its various
usage (e.g., [3, 26, 30]), our work is the frst attempt to apply this
methodology in the feld of tracker detection.

Our motivation stems from the observation that trackers’ intrin-
sic functionalities (i.e., collecting and sending user data) generate
distinctive trafc patterns that can be captured by analyzing their
packet metadata: the length and direction of packets. By compara-
tively analyzing the client-server interaction for both benign trafc
and tracker trafc, we elicit a set of features that make trackers
distinguishable from benign trafc. The resulting three types of
features: statistical features, box features, and sequential features,
are incorporated into training a machine learning (ML) classifer to
identify tracker trafc among the diverse trafc traces generated
by users regardless of their browsers, applications, or devices.

We measure the statistics from trafc traces with their similar-
ities to study the feasibility of utilizing side-channel data leaked
from network trafc in detecting trackers. We test Net-track with
diverse ML algorithms to evaluate its performance and further
study its potential. Our results show that Net-track is able to detect
trackers with 94.02% accuracy and can even discover new track-
ers yet unrecognized by existing flter lists. Besides, Net-track still
maintains its performance when using only a portion of each traf-
fc trace, showing its potential for real-time detection. The major
contributions of this work are summarized as follows.

• To our best knowledge, we are the frst to utilize only side-
channel data in detecting trackers to achieve better user
privacy that can be managed network-wide.

• We propose a platform-independent, encryption-agnostic so-
lution to overcome the limitations of the previous approaches
while mitigating the risk of privacy intrusion caused by in-
specting packet payloads or resources.

• We provide an empirical analysis that shows the distinctions
between benign trafc and tracker trafc in their trafc pat-
terns and present a set of features that fully capture trackers’
distinctive characteristics.

• We show that Net-track not only detects trackers with 94.02%
accuracy but can discover new trackers that are not on the
existing flter lists, maintaining its performance while using
only the frst few packets of each trafc trace.

2 BACKGROUND AND RELATED WORK
In this section, we briefy discuss the mechanisms of trackers’ web
tracking techniques with the previous studies on tracker detection
and trafc classifcation.

2.1 Trackers: Types and Mechanisms
Third-party trackers utilize diverse tracking methods to identify
each user and collect user data such as browsing history, location, or
browser/device properties. Stateful tracking stores information on
the user’s device to recognize each user. Fig. 1 shows an overview of
a cookie-based tracker, which is the most prevalent form of stateful
tracking that collects users’ browsing history through cross-site
tracking. When the user frst visits News.com, a third-party tracker,
embedded in the website as an advertisement, sets a cookie in the
user’s browser. The cookie’s value contains a unique identifer so
that when the user later visits Social.com, the tracker can identify the
user and notice that this user has visited News.com and Social.com.

Stateless tracking, on the other hand, does not require a tracker to
store information on user devices. Instead, they collect device/user-
specifc information that can re-identify users when combined, such
as OS/browser properties, user confguration, or browser extensions.
Despite the diference in detail, these tracking methods all collect
information about the user and send it to their tracking servers. This
common functionality enables us to capture trackers’ distinctive
characteristics and utilize them in their identifcation. Details of
analyzing the trafc patterns of trackers will be shown in Section 3.

2.2 Existing Studies on Tracker Detection
With the increasing attention to online privacy, many attempts have
been made to combat trackers through their detection, leveraging
diverse properties gained during the page load such as the structure
and behavior of JavaScript code units or features of network re-
quests. We note that our goal is not to depreciate the contributions
of these approaches, but rather to suggest a diferent approach that
can be used as a complement or as a viable alternative in today’s
web environment. We provide a thorough summary of the existing
approaches to tracker detection in Appendix A.

(1) URL-based Detection: The most widely used methods adop-
ted by privacy-sensitive users are content-blockers such as AdBlock
Plus [1], uBlock Origin [33], and Ghostery [14]. These methods de-
pend on manually curated flter lists, identifying tracking domains
with URL patterns matching the predefned ruleset. While these
methods are lightweight and easy to deploy, they are easily evaded
by changing domains through domain generation algorithms (DGA)
or proxies. Although Yu et al. [37] enabled a more robust detection
by identifying suspicious data elements in third-party requests,
their method still requires a tracker to use a consistent domain.

(2) JavaScript-based Detection: Wu et al. [36] and Ikram et al.
[16] analyzed the static features of JavaScript code units to detect
tracking JavaScript programs. As these are vulnerable to obfusca-
tion techniques [20], recent approaches (e.g., [8, 17, 18]) perform
dynamic code analysis to extract syntactic, semantic features from
JavaScript executions. While these approaches are efective in de-
tecting trackers and browser fngerprinting, they require a modifca-
tion of Blink and V8 in the Chromium browser or an instrumented
Firefox to log and attribute JavaScript behavior to document object

2231

https://Social.com
https://News.com
https://Social.com
https://News.com

Net-track: Generic Web Tracking Detection Using Packet Metadata WWW ’23, April 30–May 04, 2023, Austin, TX, USA

model (DOM) modifcations and other network requests, limiting
their applicability across diverse platforms. Net-track does not re-
quire user-level modifcations for its real-world application and is
complementary to these existing approaches. We can perform a
more robust detection by combining them as a layered defense.

(3) Network-based Detection: Aside from the DNS-based ap-
proaches (e.g., [2, 24]), which simply perform DNS fltering and thus
sufer from the same limitations of those URL-based approaches,
several other approaches utilized features from HTTP trafc or the
relationship between tracking domains. Gugelmann et al. [15] and
Shuba et al. [28] proposed using a set of features obtained by in-
specting HTTP headers and payloads (e.g., percentage of third-party
requests or requests with cookies, domains in HTTP Referer). While
their methods can detect trackers regardless of user’s browsers or
devices, applying them to encrypted trafc (e.g., through TLS prox-
ies), which account for the majority of today’s web trafc, may
incur high overhead and threats to a man-in-the-middle attack.
TrackSign [7], on the other hand, detects trackers by identifying
code fragments shared across tracking domains. Although this can
efectively discover new trackers through a network-wide anal-
ysis, it needs to fetch the entire resource to compute their code
fngerprints. Net-track can be seen as a viable alternative to these
approaches as it is encryption-agnostic and preserves its detection
accuracy even when using only a part of each trafc trace.

2.3 Research Eforts on Trafc Classifcation
There have been various eforts to manage the security of the net-
work by classifying network trafc with diverse side-channel data
(e.g., [27, 38]). Anderson et al. [3] detected malware trafc based
on packet length and TLS handshake metadata, while Taylor et
al. [30] proposed identifying smartphone apps based on packet
length and direction. Moreover, several work explored the feasi-
bility of fngerprinting web pages within the same website using
packet length information [26] or bursts in content distribution
network (CDN) trafc [35]. There also has been a line of research
utilizing deep learning in their classifcation. Sirinam et al. [29]
studied fngerprinting websites against defended Tor trafc based
on Convolutional Neural Network (CNN). On the other hand, Cui et
al. [10] utilized Long Short-Term Memory (LSTM) as well as CNN
to fngerprint websites with imperfect trafc traces, and Chen et al.
[9] classifed diverse types of trafc using LSTM with a sequence
of message size as features. In this paper, we leverage only packet
metadata: the length and direction of packets, in preserving users’
privacy against tracker trafc inside the network.

3 ANALYSIS OF REAL-WORLD TRAFFIC
We begin by showing the results from studying the diference be-
tween benign trafc and tracker trafc in their trafc patterns.
Our results show the feasibility of utilizing side-channel data from
network trafc in distinguishing tracker trafc from benign trafc.

3.1 Dataset Collection
We frst collect a real-world trafc dataset by visiting the homepages
of the top-20k Alexa websites with Chrome browser using Selenium.
We employ tshark scripts to capture all trafc generated during
the page load for 120 seconds, in order to ensure that all fows are

Figure 2: Principal component analysis results of statistical
values. (a) Analysis of statistics from downlink packets, (b)
Analysis of the entire statistics.

fully captured. Note that visiting a single website incurs multiple
requests to diferent domains as there are various third parties
engaged in the web page loading process (e.g., CDN, advertisement
servers, or tracking servers). We then divide the resulting pcap fle
in terms of connection, i.e., make multiple pcap fles each containing
a single connection between the client and the domain. This makes
us capture each client-server interaction with diverse third parties
as well as with the host of the visiting website. The data collection
is performed within a period of four weeks, resulting in a dataset
consisting of about 350k trafc traces.

We now set the ground truth by labeling each trace as tracker or
benign based on the requested URL. We use the two most popular
open-source flter lists: EasyList [11] and EasyPrivacy [12], as our
flter lists and label each trace based on whether it contains a request
of which URL matches the rules on any of these flter lists, i.e.,
classifed as tracker by flter lists. We note that while EasyList
targets both advertisements and trackers, we do not discriminate
between the two as most domain hosting advertisements also track
users. It is also worth noting that despite the well-known limitations,
flter lists are a reasonable source of ground truth when considering
the time and labor required to build a more accurate, manually
generated set of ground truth and are therefore still widely used in
related work. Our fnal labeled dataset consists of 222,009 benign
trafc traces and 126,664 tracker trafc traces.

3.2 Statistics from Trafc Traces
The frst type of trafc features of our interest are the statistical
values of packet length. As many applications show asymmetric
statistical properties in the client-to-server (uplink) and server-
to-client (downlink) directions, we divide the sequence of packet
length from each trafc trace into three types of sequences: the
length of uplink packets, the length of downlink packets, and the
length of all packets in the fow. We combine 18 types of statistical
values computed from each type of sequence, which are motivated
by Taylor et al. [30], with 8 fow-level features that capture the
characteristics of the entire fow, resulting in a total of 62 statisti-
cal features. The former 18 values are comprised of the minimum,
maximum, mean, median absolute deviation (MAD), standard devi-
ation (STD), variance, skew, kurtosis, percentiles (from 10% to 90%),
and the number of elements in the sequence. Flow-level features

2232

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lee et al.

Figure 3: Net-track architecture: A workfow overview of network-wide tracker detection using packet metadata.

comprise the sum and the information entropy of packet length in
each type of sequence, and the ratio of uplink packets to downlink
packets in terms of their total length and count.

For the resulting set of statistical features, we perform princi-
pal component analysis (PCA) to study the overall distribution
of their values. We reduce the multi-dimensional feature values
into two principal components and visualize them as a scatter plot
(Fig. 2). We can observe that for both Fig. 2a and Fig. 2b, traces of
tracker trafc are more converged than benign trafc which shows
their wider distribution. We attribute this diference to trackers per-
forming similar functionalities, leading to more distinctive, shared
patterns in their traces. Benign trafc, on the other hand, lacks
commonalities compared to trackers as it is diverse in its types as
well as its applications. We provide additional experimental results
gained from analyzing real-world trafc traces in Appendix B.

4 DESIGN OF NET-TRACK
This section introduces the overall architecture of Net-track along
with the details of our feature set and its selection process. The
notations used in this paper are illustrated in Table 1.

4.1 System Architecture
The overall workfow of Net-track is depicted in Fig. 3. Net-track
frst collects real-world trafc traces by monitoring the network
trafc inside its local network. We note that while we initially cap-
ture the entire trafc generated during the page load and separate
them into multiple pcap fles when performing our data collection,
Net-track, when deployed real-world, can monitor every TCP con-
nection to record the length of packets in each fow, generating an
abstraction of those fows in the form of packet length sequence.

Net-track then extracts three types of features from the obtained
packet length sequence: statistical features, box features, and se-
quential features, which fully represent the characteristics of tracker
trafc. To further exploit the potential of these features in trackers’
identifcation, we carry out a series of feature engineering (Section
4.3). The overall extraction process is summarized as Algorithm 1.

Finally, all these features are incorporated into training a clas-
sifer that distinguishes tracker trafc from benign trafc. We test
diverse machine learning algorithms and deep learning models to
make the best of Net-track’s performance. The resulting classifer is
applied to unknown trafc traces to label them as benign or tracker.

Algorithm 1: Feature Extraction Process of Net-track

Input: Sequence of packets P = (�1, ..., ��) in the target fow
Output: Trafc feature vector V
1: Set empty lists as A, U, D, and S
2: forall �� ∈ P do:
3: l ← length(��)
4: A.append(l)
5: if is_uplink_packet(��) then:
6: U.append(l)
7: S.append(l)
8: else:
9: D.append(l)
10: S.append(-l)
11: end
12: Calculate STAT each for U, D and A
13: Calculate BOX for both U and D with bin size as 25

and maximum length as 1500
14: BOX ← pca_reduction(BOX, n_components=20)
15: SEQ ← slice(S, begin=0, end=15)
16: V ← concat(STAT, BOX, SEQ)
17: return V

4.2 Experimental Setup
To select the feature set that can fully exploit the potential of Net-
track, we perform a series of preliminary evaluations. We study the
efect of the changes in features on the performance of Net-track
in terms of accuracy and training time. We choose the Random
Forest (RF) classifer implemented in Scikit-learn [23] as our ML
algorithm. To prevent the process of this feature selection from
afecting the evaluation of Net-track’s fnal performance, we split
the entire dataset into 20% validation set and 80% test set and use
only the validation set during the feature selection process. Further,
to mitigate the impact of dataset partitioning, we apply 10-fold
cross-validation over our validation set, dividing it into 10 equally-
sized subsets and using one part as the testing set with the rest as
the training set. After 10 rounds of iteration, we use the average as
the fnal result. The machine used in this experiment has a 10-core
Intel i9-7900X CPU, GeForce GT 1030 GPU, 32 GB RAM, 4 TB hard
disk, and is installed with an Ubuntu 18.04 OS.

2233

Net-track: Generic Web Tracking Detection Using Packet Metadata WWW ’23, April 30–May 04, 2023, Austin, TX, USA

5 10 15 20 25 30 35 40 45 50 55 60 62
Statistical Feature with Top-K Importance

82

84

86

88

90

A
cc

ur
ac

y
(%

)

Accuracy
Training Time

2

4

6

8

10

Tr
ai
ni
ng

 T
im

e
(
)

Figure 4: Efect of statistical features on
the performance of Net-track.

10 20 30 40 50 60
Number of Components

82

83

84

85

86

87

A
cc
ur
ac

(%

)

Accurac
Training Time

4

6

8

10

12

14

Tr
ai
ni
ng
 T
im

e
(s
)

Figure 5: Efect of PCA on box features
on the performance of Net-track.

5 10 15 20 25 30 35 40 45 50 55 60 73
Length of Sequential Featu es

87.5

88.0

88.5

89.0

89.5

90.0

90.5

A
cc

u
ac

y
(%

)

Accu acy
T aining Time 2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
ai

ni
ng

 T
im

e
(s

)

Figure 6: Efect of the length of sequen-
tial features on the performance of Net-
track.

Table 1: List of Notations.

Notation Meaning

A Packet length sequence of all packets

U Packet length sequence of uplink packets

D Packet length sequence of downlink packets

S Signed sequence of packet length

STAT Feature vector of statistical features

BOX Feature vector of box features

SEQ Feature vector of sequential features

4.3 Selecting the Feature Set
We now present the features that Net-track utilizes in its detection.
Based on the original packet length sequence (A), we build three
additional sequences: U, D, and S, and extract our features from
these sequences. For S, its sign indicates the direction of the packet:
positive for uplink and negative for downlink. We explain more
about our design choices in Appendix C.

(1) Statistical Features: The frst type of features, statistical
features, are computed from U, D, and A as discussed in Section 3.2,
extracting 18 features from each sequence with 8 fow-level features
from the entire fow. We quantify the contribution of each feature
with feature importance gained when building an RF classifer based
on Gini impurity. Fig. 7 shows the top 15 features that contribute
most to identifying trackers in our dataset. The prefx ‘u_’ and ‘d_’
each denotes the features computed from U and D, respectively.
‘perK ’ and ‘fow_size’ each denotes the �0�ℎ percentile and the sum
of packet length in the sequence. We can see that several features
contribute more than others, although not greatly.

Motivated by the result, we initially tried using certain features
with their contribution over a certain threshold, expecting to reduce
the feature dimension while preserving the accuracy. Fig. 4 shows
the result when using statistical features with top-k importance.
Surprisingly, we observe that while the classifcation accuracy grad-
ually increases, this does not apply to the training time. Using the

u_p
er5

u_fl
ow_

sizeu_p
er4

u_p
er3u_k

urt
u_sk

ew u_st
d
u_m

ean d_va
r
u_p

er6
u_p

er9 u_va
r
u_p

er7
u_p

er8u_m
ad

0.015

0.020

0.025

0.030

0.035

Fe
at
ur
e
Im

po
rta

nc
e

Figure 7: Top 15 statistical features that contribute most to
the detection of trackers on our dataset.

entire 62 statistical features showed the highest accuracy with its
training time similar to or even lower than the case of using a
smaller number of features. According to the result, we add all
statistical features to our feature set.

(2) Box Features: We then extract box features, which are the
distribution of packet length counted in terms of each bin. For each
trafc trace, each uplink (downlink) packet in the fow is classifed
into equally sized bins with a size of 25 according to its length. A
packet longer than 1500 bytes is counted as the 61st bin. This results
in a 61-dimensional feature vector for each U and D, a total of a
122-dimension. As box features are initially too sparse to be used
in their original form, we perform PCA with a diferent number of
principal components to reduce their dimensionality.

In Fig. 5, Using N components indicates reducing the box features
into a N -dimensional vector. We can see that while increasing the
number of components leads to higher accuracy, it takes nearly
double the training time to get an enhancement of less than 1%p.
This is because increasing the number of components does not
necessarily lead to an accurate classifcation as the variance of
the dataset is concentrated only on the frst few components. A
latecomer may have a negligible efect, i.e., contribution, on the
detection of trackers. Based on the result, we use 20 components
as it shows moderate accuracy with a shorter training time.

(3) Sequential Features: The last type of features are the sequen-
tial features, which denote the signed sequence of packet length

2234

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lee et al.

Table 2: Hyperparameters of ML Algorithms.

Classifers Hyperparameters

DT
criterion=‘entropy’, max_depth=None,

max_features=None

k-NN n_neighbors=1, metric=‘minkowski’, p=1

MLP hidden_layer_sizes=[256,256,256], activation=‘relu’

RF
criterion=‘gini’, max_depth=None,

max_features=‘sqrt’, n_estimators=55

(S). The main factor of our consideration is their length, i.e., the
length of S. Starting from 5, we increase the length with a step
size of 5 until 60 and then 73, which is the 95�ℎ percentile of the
length of all S in our dataset. As packet length sequences are in
arbitrary lengths, we pad shorter sequences by appending zeros to
them and truncate the longer ones. The results of our experiment
are shown in Fig. 6. The accuracy and training time when using a
packet sequence of length 5 are 76.11% and 0.9989 s, respectively.

We observe that while the accuracy increases until the length
of sequential features becomes 15, it continues to drop when it
becomes longer, albeit with a longer training time. We attribute this
result to the length of traces, of which the median is shorter than
20 for both benign trafc and tracker trafc. Also, for the average
length of traces, benign trafc and tracker trafc each show an
average of 29.32 and 18.31. Note that traces of tracker trafc are
generally shorter as they convey less content than benign trafc.
When the length of sequential features becomes longer, there comes
more S padded with zeros. This negatively impacts the classifcation
as there are more null-valued features in the feature set. According
to our results, we set the length of sequential features to 15.

5 PERFORMANCE EVALUATION
This section presents the results of our evaluation, which is de-
signed to answer the following four key research questions: (1) how
accurate is Net-track in detecting trackers with only side-channel
data? (2) how efective is Net-track in discovering trackers that
are not on the flter lists? (3) how well can Net-track preserve its
performance when using only a part of each trafc trace? and (4)
can deep learning enhance the performance of Net-track?

Our evaluation is performed in the same setting as discussed in
Section 4.2, but by applying 10-fold cross-validation on the test set.
We compare our predictions made by Net-track with the labels de-
rived from the flter lists described in Section 3.1. We then evaluate
how accurately Net-track can reproduce those labels and perform
a manual analysis on cases where those results collide, fnding that
Net-track can identify many new trackers missed by existing flter
lists. Our ML algorithms are implemented in Scikit-learn [23] and
the deep learning models are implemented in Python using Keras
with Tensorfow as the back-end [19]. We perform grid search over
the validation set to tune the hyperparameters. For the run time,
the inference time is averaged by the number of traces in the testing
set. We note that each testing set is a 10% subset of the entire test
set as we perform 10-fold cross-validation in our evaluation.

Figure 8: Detection performance of Net-track with diferent
ML algorithms.

Table 3: Run time of Net-track with diferent ML algorithms.

DT k-NN MLP RF

Training Time (s) 27.7080 0.0516 1638.53 73.3319

Inference Time (ms) 0.0011 12.813 0.0209 0.0163

5.1 Detection Performance of Net-track
Net-track incorporates the extracted features into training an ML
classifer to perform its detection. We choose four ML algorithms
that are widely used in related work: Decision Tree (DT), k-Nearest
Neighbors (k-NN), Multi-layer Perceptron (MLP), and Random For-
est (RF), and comparatively analyze their performance. Table 2
shows the details of our hyperparameters selection. Along with the
accuracy used in Section 4.3, we use precision, recall, and F1-score
as our metrics, which are defned as:

�������������
��������� =

������������� + ��������������
(1)

� ������������
������ =

������������� + ��������������
(2)

��������� ∗ ������
� 1-����� = 2 ∗

��������� + ������
(3)

The overall results of our experiment are shown in Fig. 8 and
Table 3. We can observe that while DT is faster than other ML
algorithms (except for k-NN that simply ‘remembers’ the training
data in its training stage), its detection performance is the worst,
with 90.2% accuracy and 86.55% F1-score. On the other hand, k-NN
and MLP show a somewhat opposite result, although with similar
levels of performance with about 92.5% accuracy. While k-NN is the
slowest in making its inference, MLP takes the longest to train its
model. RF is the highest both in its accuracy (94.02%) and precision
(95.12%), accompanied by a moderate training/inference time. As RF
consists of multiple DTs and makes its fnal prediction based on the
probability estimate across the trees, it is robust to overftting and
thus results in better performance. We also note that we can further
reduce the run time of RF and k-NN through multiprocessing. When
we set n_jobs to 10, the inference time is reduced to 7.209 ms and
0.0054 ms for k-NN and RF, respectively, while maintaining their
detection performance.

2235

Net-track: Generic Web Tracking Detection Using Packet Metadata WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 4: Results of manual analysis on cases which Net-track
classifed as tracker while flter lists labeled as benign.

Trafc Type #

Tracker
Type 1 38 (19 %)

Type 2 15 (7.5 %)

Type 3 16 (8 %)

Benign 131 (65.5 %)

The above results show that Net-track has high precision at
95% in detecting trackers’ privacy-intrusive behaviors. With Net-
track’s high precision, we can perform pinpoint blockage of trackers
without impeding the benign. Filter lists fail to do so due to their
over-blocking of resources, blocking entire domains or URLs in a
given ruleset. Iqbal et al. [18] found out that resources of the same
type (e.g., scripts) fetched from the same domain may show diferent
functionalities depending on the context they are requested. Such
cases are recklessly blocked by flter lists and increase the number
of ‘False Negative’, i.e., the number of cases flter lists labeled as
tracker while Net-track classifed as benign, making Net-track’s
recall relatively lower than its precision.

What also makes these results worthwhile is that Net-track’s
performance is attained without analyzing resources loaded at the
application layer nor inspecting contents in the HTTP payloads. By
leveraging only side-channel data from network trafc, Net-track
achieves a level of accuracy comparable to other approaches. We
will discuss more on our future aim to develop Net-track in Section
6. Based on the overall results, we choose RF as our classifer. We
note that the results in the following Section 5.2 and Section 5.3 are
obtained using our RF classifer.

5.2 Discovering New Trackers
In this section, we show how well Net-track can discover new
trackers based on its learning and can further address flter lists’
limitations. As flter lists consist of a set of crowdsourced rules
generated by human experts, which are the results of their manual
analysis on millions of websites, it is hard for those flter lists to
identify new tracking services or react to evasions (e.g., domain
variants) in a timely manner. Net-track gives a hand with this
arduous struggle for privacy.

We perform a case study on 200 samples of randomly selected
trafc traces that Net-track classifed as tracker while labeled as
benign by flter lists. After analyzing their client-server interaction
and the fetched resources, we label each trafc trace as tracker
trafc if it corresponds to any of the following criteria:

• Type 1: This type of trafc fetches advertisements (ads)
from their ad servers. As stated in Section 3.1, there is no
clear distinction between ads and tracking resources as most
domain hosting ads also track users by identifying users
through cookies or sending uid with their requests.

• Type 2: This type of trafc downloads tracking-related
JavaScript fles, which directly set cookies in browsers or
perform device fngerprinting to collect user information.

5 10 15 20 25 30 35 40 45 50 55 60 73
Number of Packets

0.76

0.80

0.84

0.88

0.92

A
cc
ur
ac
y

0.7726

0.9380 0.9362 0.9374 0.9371 0.9383 0.9387 0.9392 0.9388 0.9383 0.9387 0.9390 0.9394

Figure 9: Detection performance of Net-track when using
only the frst n packets.

• Type 3: Initiated by tracking pixels or tracking scripts, this
type of trafc communicates with third-party tracking ser-
vices to send information to their servers. For example, send-
ing the user’s browsing history, location, or measurements
gained using browser API in the form of parameters or pay-
loads of HTTP GET/POST methods.

We note that as many of these tracker trafc show ‘mixed’ features
of the above, it is hard to strictly group them in each category.
Therefore, we only consider their main functionality and show the
distribution of tracker trafc according to their type. Table 4 shows
the details of our analysis results.

Our results demonstrate that Net-track can efectively detect
trackers that are not on the existing flter lists. This also further
reinforces Net-track’s precision (discussed in Section 5.1) as a con-
siderable portion (34.5%) of those ‘detection errors’ were indeed
trackers that have not yet been discovered. By analyzing these
newly detected trackers and the existing flter lists, we fnd that
EasyList applies to mc.yandex.ru but not to mc.yandex.com. It also
blocks adtarget.me but not adtarget.com.tr, as these flter lists are
subject to domain changes. Net-track also identifes tracking be-
haviors missed by existing flter lists such as downloading tracking-
related script (conversations-embed.js) from usemessages.com or
communicating with third-party tracking services, sending infor-
mation to subdomains of drift.com (e.g., targeting.api, metrics.api) or
sharing information between tracking services, i.e., cookie syncing,
through x.dlx.addthis.com. It also detects a script (afterpay-1.x.js)
on afterpay.com. Although afterpay.com is not essentially a tracking
domain, its script collects information such as city, country, device
manufacturer/model, and OS name/version at the user’s browser.

Besides, when investigating the newest version of the flter lists
at the time of this writing, we observe that 37.68% of these newly
found trackers are still unenrolled. We note that we use flter lists
that are up to date at the moment of data collection in setting the
ground truth and training our model, and it has passed more than
ten months since then. Although given enough time, these manually
curated flter lists still fail to adapt to changes in trackers and their
evasions, as they are too slow to keep pace with the fast-changing
nature of third-party trackers. With Net-track, we can provide
these flter lists with a list of candidates that Net-track marked as
suspicious, signifcantly reducing their scope of manual analysis
and help complement these flter lists much more efciently.

2236

https://afterpay.com
https://afterpay.com
https://afterpay-1.x.js
https://x.dlx.addthis.com
https://drift.com
https://usemessages.com
https://conversations-embed.js
https://adtarget.me
https://mc.yandex.com
https://mc.yandex.ru

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lee et al.

Table 5: Hyperparameters selection for LSTM. Table 6: Detection performance of Net-track with LSTM.

Hyperparameters Search Range Final

Input Units [50, ..., 300] 150

Hidden Layer Units [64, ..., 256] 64

Activation [tanh, relu] tanh

Dropout [0.1, ..., 0.5] 0.3

Batch Size [32, ..., 512] 256

Training Epochs [10, ..., 100] 50

5.3 Potential for Real-time Detection
In our previous experiments, we extract features from all packets in
each trafc trace. But when assuming a more realistic environment
where Net-track performs real-time classifcation of network trafc,
it should be able to detect trackers in the midst of the connection,
i.e., use as few packets as possible in making its decision. Therefore,
to study Net-track’s potential for real-time detection, we train our
model with the features extracted only from the frst n packets of
each trafc trace and evaluate its performance.

Fig. 9 shows the details of the results. We can observe that except
for the case of using the frst 5 packets, Net-track maintains its
accuracy of over 93%. It shows the lowest accuracy at 93.62% when
using the frst 15 packets and the highest accuracy at 93.94% when
using the frst 73 packets of each trafc trace. We note that the
average length of tracker trafc in our dataset is 18.31. While both
benign and tracker trafc show similar behavior patterns in the
early stage of connection (frst 5 packets), Net-track can extract
informative features with a minimum of 10 packets as most trackers
are amidst connection. Our results demonstrate that Net-track can
perform its accurate detection even with insufcient data, showing
its ability to identify tracker trafc within a short time after it is
generated, instead of waiting for each fow to complete.

5.4 Net-track with Deep Learning
This section further explores the beneft deep learning might bring
to the performance of Net-track. Among the various deep learning
models, we choose LSTM, a specifc type of recurrent neural net-
work that specializes in classifying time-series data such as speech,
video, or network trafc and is thus widely used in related work.

Table 5 shows the list and the values of the hyperparameters for
our LSTM model. An input instance for our LSTM-based classifer
is the signed sequence of packet length (S) from each trafc trace.
For the length of each sequence, we use 15 (length of sequential
features), 25 (average length of traces), and 73 (95�ℎ percentile in the
length of traces). Table 6 shows the details of our evaluation results.
We can observe that our LSTM-based classifer performs similarly
to other ML-based classifers, but with a longer run time. To be
more specifc, while LSTM shows similar accuracy (93.50% when
using a sequence of length 25) with our RF-based classifer (94.02%),
it takes 11 times longer than RF in making its inference. Our results
show that although deep learning may also lead to a comparable
performance to other approaches (with a proper model and a careful
selection of its hyperparameters), its intrinsic shortcomings in time
complexity make it less suitable for making a timely decision.

Sequence
Length

Accuracy Precision Recall Train
(s)

Inference
(ms)

15 0.9287 0.9196 0.8808 771.03 0.1701

25 0.9350 0.9262 0.8922 923.80 0.1783

73 0.9349 0.9309 0.8867 1969.83 0.2274

6 DISCUSSION
For further study, we aim to apply Net-track as a back-end system
in a layered architecture, acting as a source of information that
feeds other systems. For example, network managers in an enter-
prise network can initially flter out tracker trafc in their local
network using Net-track. When Net-track identifes tracker trafc
from unknown sources (whether in real-time or using the entire
fow), it can update frewall rules or tracking domain lists to block
subsequent fows, protecting other users of the network. Users who
are concerned more about their privacy may then equip additional
browser-based defenses (e.g., [1, 14, 33]).

Also, when considering its real-world application, Net-track may
be afected by changes in trafc characteristics. For example, as Net-
track utilizes distinct properties that tracker trafc has regarding
its packet length sequence, its features may be compromised by ob-
fuscation in trafc patterns induced by dummy packets or changes
in packet length. Addressing this challenge will be explored in our
future work.

We can further enhance Net-track’s performance by retraining
its classifer. The accuracy of the flter lists greatly afects Net-
track’s performance as Net-track uses them to label its training
data as tracker or benign. As discussed in Section 5.2, Net-track can
help complement these flter lists. This in turn improves Net-track
as we can retrain Net-track by re-labeling its training data with
the enhanced flter lists. In fact, when we use the newest flter lists
at the time of writing in setting the ground truth and retrain our
model, we observe that our RF classifer shows a 4%p increase in
recall while maintaining its accuracy and precision.

7 CONCLUSION
In this paper, we proposed a novel approach to tracker detection
called Net-track, which can manage a secure, tracking-free web
by utilizing only side-channel data leaked from network trafc
in detecting trackers network-wide, independently of the user’s
browsers or devices. Our method is encryption-agnostic and does
not inspect contents in packet payloads or resources loaded at
the application layer, preventing leakage of user data to tracking
servers in a privacy-preserving manner. The experimental results
demonstrated that Net-track can identify tracker trafc among the
diverse trafc traces with 94.02% accuracy and can also discover
many new trackers that are not recognized by existing flter lists.
Moreover, Net-track showed its potential for detecting trackers
in real-time, preserving its accuracy while using only the frst n
packets of each trafc trace. Our future work aims to incorporate
Net-track into a back-end system that can block trackers in real-
time based on Net-track’s discovery of new, unknown trackers.

2237

Net-track: Generic Web Tracking Detection Using Packet Metadata WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korean government (Ministry
of Science & Information and Communication Technology) (No.
2019R1A2C2088812).

REFERENCES
[1] AdBlock Plus. Accessed: Sep. 18, 2022. https://adblockplus.org/
[2] AdGuard DNS. Accessed: Sep. 18, 2022. https://adguard-dns.com/
[3] Blake Anderson and David McGrew. Aug. 2017. Machine Learning for Encrypted

Malware Trafc Classifcation: Accounting for Noisy Labels and Non-Stationarity.
In Proc. ACM KDD. Halifax, NS, Canada, 1723–1732.

[4] Apple. Accessed: Sep. 17, 2022. Tracking Prevention in WebKit. WebKit. https:
//webkit.org/tracking-prevention/

[5] Brave. Accessed: Sep. 17, 2022. https://brave.com/
[6] Luca Bufalieri, Massimo La Morgia, Alessandro Mei, and Julinda Stefa. Oct. 2020.

GDPR: When the Right to Access Personal Data Becomes a Threat. In Proc. IEEE
ICWS. Virtual Event, 75–83.

[7] Ismael Castell-Uroz, Josep Solé-Pareta, and Pere Barlet-Ros. May 2021. TrackSign:
Guided Web Tracking Discovery. In Proc. IEEE INFOCOM. Virtual Event, 1–10.

[8] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. May 2021.
Detecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Sig-
natures. In Proc. IEEE S&P. Virtual Event, 1715–1729.

[9] Wenxiong Chen, Feng Lyu, Fan Wu, Peng Yang, Guangtao Xue, and Minglu Li.
2021. Sequential Message Characterization for Early Classifcation of Encrypted
Internet Trafc. IEEE Trans. Veh. Technol. 70, 4 (2021), 3746–3760.

[10] Weiqi Cui, Tao Chen, and Eric Chan-Tin. Dec. 2020. More Realistic Website
Fingerprinting Using Deep Learning. In Proc. IEEE ICDCS. Singapore, 333–343.

[11] EasyList. Accessed: Sep. 21, 2022. https://easylist.to/easylist/easylist.txt
[12] EasyPrivacy. Accessed: Sep. 21, 2022. https://easylist.to/easylist/easyprivacy.txt
[13] Steven Englehardt and Arvind Narayanan. Oct. 2016. Online Tracking: A 1-

Million-Site Measurement and Analysis. In Proc. ACM CCS. Vienna, Austria,
1388–1401.

[14] Ghostery. Accessed: Sep. 18, 2022. https://www.ghostery.com/
[15] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent Lenders. Jun.

2015. An Automated Approach for Complementing Ad Blockers’ Blacklists. In
Proc. PETS. Philadelphia, PA, USA, 282–298.

[16] Muhammad Ikram, Hassan Asghar, Mohamed Ali Kaafar, Balachander Krish-
namurthy, and Anirban Mahanti. Jan. 2017. Towards Seamless Tracking-Free
Web: Improved Detection of Trackers via One-class Learning. In Proc. PETS.
Minneapolis, MN, USA, 79–99.

[17] Umar Iqbal, Steven Englehardt, and Zubair Shafq. May 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In Proc.
IEEE S&P. Virtual Event, 1143–1161.

[18] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafq. May 2020. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. In Proc. IEEE S&P. Virtual Event, 763–776.

[19] Keras: the Python deep learning API. Accessed: Sep. 23, 2022. https://keras.io/
[20] Hoan Le, Federico Fallace, and Pere Barlet-Ros. Sep. 2017. Towards accurate

detection of obfuscated web tracking. In Proc. IEEE M&N. Naples, Italy, 1–6.
[21] Célestin Matte, Nataliia Bielova, and Cristiana Santos. May 2020. Do Cookie

Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB
Europe’s Transparency and Consent Framework. In Proc. IEEE S&P. Virtual Event,
791–809.

[22] Mozilla. Accessed: Sep. 17, 2022. Tracking Protection. MDN Web Docs. https:
//developer.mozilla.org/en-US/docs/Web/Privacy/Tracking_Protection

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

[24] Pi-hole. Accessed: Sep. 18, 2022. https://pi-hole.net/
[25] Stan Salvador and Philip Chan. Oct. 2007. FastDTW: Toward accurate dynamic

time warping in linear time and space. Intell. Data Anal. 11, 5 (Oct. 2007), 561–580.
[26] Meng Shen, Yiting Liu, Liehuang Zhu, Xiaojiang Du, and Jiankun Hu. 2021.

Fine-Grained Webpage Fingerprinting Using Only Packet Length Information of
Encrypted Trafc. IEEE Trans. Inf. Forensics Secur. 16 (2021), 2046–2059.

[27] Meng Shen, Yiting Liu, Liehuang Zhu, Ke Xu, Xiaojiang Du, and Nadra Guizani.
2020. Optimizing Feature Selection for Efcient Encrypted Trafc Classifcation:
A Systematic Approach. IEEE Network 34, 4 (2020), 20–27.

[28] Anastasia Shuba, Athina Markopoulou, and Zubair Shafq. Jul. 2018. NoMoAds:
Efective and Efcient Cross-App Mobile Ad-Blocking. In Proc. PETS. Barcelona,
Spain, 125–140.

[29] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Oct. 2018.
Deep Fingerprinting: Undermining Website Fingerprinting Defenses with Deep
Learning. In Proc. ACM CCS. Toronto, Canada, 1928–1943.

[30] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust Smartphone App Identifcation via Encrypted Network Trafc Analysis.
IEEE Trans. Inf. Forensics Secur. 13, 1 (2018), 63–78.

[31] The European Parliament and the Council of the European Union. Apr. 2016.
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Ofcial Journal of the European
Union (Apr. 2016).

[32] The European Parliament and the Council of the European Union. Jul. 2002.
Directive 2002/58/EC of the European Parliament and of the Council of 12 July
2002 concerning the processing of personal data and the protection of privacy
in the electronic communications sector (Directive on privacy and electronic
communications). Ofcial Journal of the European Union (Jul. 2002).

[33] uBlock Origin. Accessed: Sep. 18, 2022. https://github.com/gorhill/uBlock
[34] W3Techs. Accessed: Sep. 23, 2022. Usage statistics of Default protocol https for

websites. https://w3techs.com/technologies/details/ce-httpsdefault
[35] Kailong Wang, Junzhe Zhang, Guangdong Bai, Ryan Ko, and Jin Song Dong.

Apr. 2021. It’s Not Just the Site, It’s the Contents: Intra-Domain Fingerprinting
Social Media Websites Through CDN Bursts. In Proc. WWW. Ljubljana, Slovenia,
2142–2153.

[36] Qianru Wu, Qixu Liu, Yuqing Zhang, Peng Liu, and Guanxing Wen. Sep. 2016. A
Machine Learning Approach for Detecting Third-Party Trackers on the Web. In
Proc. ESORICS. Heraklion, Greece, 238–258.

[37] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol. Apr. 2016. Track-
ing the Trackers. In Proc. WWW. Montréal, Québec, Canada, 121–132.

[38] Jingjing Zhao, Xuyang Jing, Zheng Yan, and Witold Pedrycz. 2021. Network
trafc classifcation for data fusion: A survey. Information Fusion 72 (2021),
22–47.

A SUMMARY OF THE EXISTING WORK
Table 7 shows the strengths and weaknesses of existing work along
with the ones of Net-track. Although there have been diverse ap-
proaches each leveraging its distinct properties, we note that there
is no ‘silver bullet’ in the feld of tracker detection, as they each suf-
fer from their own limitations. By leveraging only packet metadata,
Net-track is complementary to these approaches and can work as a
basis of privacy protection that operates at the back end, enabling
more precise detection of trackers when combined.

B ANALYZING FEATURES FROM PACKET
LENGTH

We further study the distinctions between benign trafc and tracker
trafc in terms of packet length, analyzing their distribution and
measuring the similarity between those packet length sequences.

B.1 Distribution of Packet Length
To analyze the diference in the distribution of packet length be-
tween benign trafc and tracker trafc, we keep a count of each
bin to which the length of each packet in the fow belongs, with
the bin size as 25 and the maximum length as 1500 (e.g., any packet
with length in the range [0,25) is counted as the frst bin, [25,50)
counted as the second). By normalizing the count of each bin with
the total number of uplink (downlink) packets in the fow, we get
the distribution of packet length for each trafc trace. For each bin,
we compute the mean of its normalized count between all traces
belonging to the same trafc type. The results are shown in Fig. 10.

We can observe that for both uplink packets (Fig. 10a) and down-
link packets (Fig. 10b), the distribution of packet length difers
according to the trafc type. What is noteworthy is that simi-
lar to the results in Fig. 2a, the distribution of downlink packets

2238

https://adblockplus.org/
https://adguard-dns.com/
https://webkit.org/tracking-prevention/
https://webkit.org/tracking-prevention/
https://brave.com/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://www.ghostery.com/
https://keras.io/
https://developer.mozilla.org/en-US/docs/Web/Privacy/Tracking_Protection
https://developer.mozilla.org/en-US/docs/Web/Privacy/Tracking_Protection
https://pi-hole.net/
https://github.com/gorhill/uBlock
https://w3techs.com/technologies/details/ce-httpsdefault

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lee et al.

Table 7: Summary of the existing work on tracker detection.

Properties Ref. Year Advantages Disadvantages

URL Request
[1, 14, 33] 2022 - Lightweight and easy to deploy

- Support real-time detection
- Susceptible to domain changes
- Require specifc browser to install[1, 14, 33] [37] 2016

DNS Query [2, 24] 2022
- Does not require installation on each device
- Support real-time detection

- Susceptible to domain changes
- Does not work against encrypted DNS

Code Structure
[36] 2016 - Robust to domain changes

- Does not require specifc browser to deploy
- Susceptible to code obfuscation
- Unable to detect in real-time [16] 2017

JavaScript
Behavior

[18] 2020 - Robust to domain changes and code obfuscation
- Support real-time detection[18]

- Depend on specifc browser functions
- Require modifying the base browser to deploy [8, 17] 2021

HTTP
Header/Payload

[15] 2015 - Does not require installation on each device
- Support real-time detection[28]

- Inspecting payloads may raise a privacy issue
- Does not work against encrypted trafc [28] 2018

Code
Fingerprint

[7] 2021 - Robust to domain changes
- Does not require specifc browser to deploy

- Require downloading the entire fle
- Unable to detect in real-time

Packet
Metadata

This
Work

2023 - Platform-independent and encryption-agnostic
- Can detect trackers with partial traces

- May be afected by changes in trafc charact-
eristics (e.g., packet size randomization)

0 250 500 750 1000 1250 1500+

Packet Length (Byte)
(a)

0

5

10

15

20

R
at

io
 (

%
)

0 250 500 750 1000 1250 1500+

Packet Length (Byte)
(b)

0

5

10

15

R
at

io
 (

%
)

Figure 10: Distribution ratio of packet length. Packets are
aggregated with their length into an interval size of 25. (a)
Uplink packets, (b) Downlink packets.

shows a greater diference than that of uplink packets. This is be-
cause trackers focus more on sending information to their tracking
servers rather than downloading resources, while most benign traf-
fc fetches web contents or other resources during the page load,
generating downlink packets with larger payloads. Thus, the length
of downlink packets leads to a more noticeable distinction between
benign trafc and tracker trafc.

B.2 Similarity between Packet Sequences
In addition to the three types of sequences discussed in Section
3.2, we build a signed sequence of packet length, of which the sign

Benign1 Benign2 Benign3 Benign4 Benign5 Tracker1 Tracker2 Tracker3 Tracker4 Tracker5

Tr
ac
ke
r5

Tr
ac
ke
r4

Tr
ac
ke
r3

Tr
ac
ke
r2

Tr
ac
ke
r1

B
en
ig
n5

B
en
ig
n4

B
en
ig
n3

B
en
ig
n2

B
en
ig
n1

1.3e+04 1.4e+04 9.3e+03 9.8e+03 1.5e+04 2.1e+03 1.5e+03 1.2e+03 2.1e+03 0

1.7e+04 1.9e+04 1.2e+04 1.4e+04 1.9e+04 5 6.6e+02 1.2e+03 0 2.1e+03

1.2e+04 1.5e+04 8.7e+03 1e+04 1.5e+04 1.2e+03 6.2e+02 0 1.2e+03 1.2e+03

1.9e+04 2e+04 1.4e+04 1.5e+04 2.2e+04 6.6e+02 0 6.2e+02 6.6e+02 1.5e+03

1.7e+04 1.9e+04 1.2e+04 1.4e+04 1.9e+04 0 6.6e+02 1.2e+03 5 2.1e+03

3.1e+03 7e+03 3.7e+03 2.5e+03 0 1.9e+04 2.2e+04 1.5e+04 1.9e+04 1.5e+04

1.3e+03 5.5e+03 1.8e+03 0 2.5e+03 1.4e+04 1.5e+04 1e+04 1.4e+04 9.8e+03

1.3e+03 5.7e+03 0 1.8e+03 3.7e+03 1.2e+04 1.4e+04 8.7e+03 1.2e+04 9.3e+03

5.5e+03 0 5.7e+03 5.5e+03 7e+03 1.9e+04 2e+04 1.5e+04 1.9e+04 1.4e+04

0 5.5e+03 1.3e+03 1.3e+03 3.1e+03 1.7e+04 1.9e+04 1.2e+04 1.7e+04 1.3e+04

0

2500

5000

7500

10000

12500

15000

17500

20000

Figure 11: Similarity between packet length sequence of traf-
fc traces measured in terms of DTW distance. A closer dis-
tance indicates higher similarity.

indicates the direction of the packet: positive for uplink and negative
for downlink. We then measure the similarity between trafc traces
in terms of the distance between those signed sequences. As trafc
traces are with an arbitrary length, we use dynamic time warping
(DTW) [25] to measure their distance. Fig. 11 shows the similarity
between traces that are randomly selected each from benign trafc
and tracker trafc. We can observe that traces belonging to the same
type show a higher similarity between each other while showing a

2239

Net-track: Generic Web Tracking Detection Using Packet Metadata

larger distance with traces in another type. It is worth noting that
the similarity between tracker trafc is relatively more robust than
that of benign trafc. As with the result in Section 3.2, traces of
tracker trafc continue to show a convergence of their features,
indicating the presence of their commonalities in patterns that
make them distinguishable from benign trafc.

C EXPLORING CANDIDATE FEATURES
Feature engineering of Net-track involved examining myriads of
approaches [27, 38] and measuring their efectiveness. We initially
study diverse features that can be obtained from packet metadata.
These include counting the number of uplink/downlink packet
blocks (i.e., when packets are consecutively transmitted to the same
direction) or accumulating packet length of the original packet
length sequence for sequence abstraction. We also investigate

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

relational features such as the magnitude, radius, covariance, and
correlation coefcient of packet length in each trace. However, the
efect of these features on the performance of Net-track falls short
of our expectations, leading to our fnal feature set that can fully
capture the distinctive characteristics of tracker trafc: statistical,
box, and sequential features.

We further refne the resulting feature set by complementing
our dataset with neighborhood-based collaborative fltering, which,
however, only brings marginal enhancements. When the number
of packets is small, there exist cases where some feature values are
unavailable. For each missing feature value, we select three traces
based on their similarity with the target trace and use their average
as a prediction. Using this augmented dataset only brings negligible
impact on Net-track’s detection. Therefore, we choose to use our
dataset in its original form.

2240

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Trackers: Types and Mechanisms
	2.2 Existing Studies on Tracker Detection
	2.3 Research Efforts on Traffic Classification

	3 Analysis of Real-world Traffic
	3.1 Dataset Collection
	3.2 Statistics from Traffic Traces

	4 Design of Net-track
	4.1 System Architecture
	4.2 Experimental Setup
	4.3 Selecting the Feature Set

	5 Performance Evaluation
	5.1 Detection Performance of Net-track
	5.2 Discovering New Trackers
	5.3 Potential for Real-time Detection
	5.4 Net-track with Deep Learning

	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Summary of the existing work
	B Analyzing features from packet length
	B.1 Distribution of Packet Length
	B.2 Similarity between Packet Sequences

	C Exploring candidate features

