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ABSTRACT 
While third-party trackers breach users’ privacy by compiling large 
amounts of personal data through web tracking techniques, com-
bating these trackers is still left at the hand of each user. Although 
network operators may attempt a network-wide detection of track-
ers through inspecting all web trafc inside the network, their 
methods are not only privacy-intrusive but of limited accuracy 
as these are susceptible to domain changes or inefective against 
encrypted trafc. To this end, in this paper, we propose Net-track, a 
novel approach to managing a secure web environment through 
platform-independent, encryption-agnostic detection of trackers. 
Utilizing only side-channel data from network trafc that are still 
available when encrypted, Net-track accurately detects trackers 
network-wide, irrespective of user’s browsers or devices without 
looking into packet payloads or resources fetched from the web 
server. This prevents user data from leaking to tracking servers in 
a privacy-preserving manner. By measuring statistics from trafc 
traces and their similarities, we show distinctions between benign 
trafc and tracker trafc in their trafc patterns and build Net-
track based on the features that fully capture trackers’ distinctive 
characteristics. Evaluation results show that Net-track is able to 
detect trackers with 94.02% accuracy and can even discover new 
trackers yet unrecognized by existing flter lists. Furthermore, Net-
track shows its potential for real-time detection, maintaining its 
performance when using only a portion of each trafc trace. 

CCS CONCEPTS 
• Security and privacy → Network security; • Networks → Net-
work privacy and anonymity; Network monitoring. 
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encrypted trafc analysis, machine learning, security management, 
third-party tracker, web security 
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1 INTRODUCTION 
With the ever-increasing attention towards online privacy, protect-
ing users’ personal data has become a crucial issue in making a 
secure web environment. While policies such as the ePrivacy Di-
rective (ePD) [32] or the EU General Data Protection Regulation 
(GDPR) [31] have been implemented as a response, there still remain 
factors threatening users’ data privacy [6, 21]. One of those main 
threats are third-party trackers, commonly embedded in websites 
visited by users in the form of advertisements or web beacons. 

Third-party trackers breach users’ privacy by compiling large 
amounts of personal data through web tracking techniques. These 
trackers collect information such as the user’s location or browsing 
history using cookies or device/browser fngerprinting. It has been 
studied that there exist 22 trackers per site on average, with more 
than 81,000 of them in total [13]. Along with the numerous eforts 
made by the research community to combat trackers, the industry 
now trends to integrate these privacy-protecting features into their 
products (e.g., Mozilla Firefox [22], Apple Safari [4], or Brave [5]). 

Still, this daunting task of privacy protection is left at the hand of 
each user. A worried user may detect trackers loaded at his browser 
based on the requested URL or by analyzing HTML/JavaScript codes. 
Since URL-based approaches (e.g., [1, 14, 33, 37]) are easily evaded 
by changing domains or using the frst-party domain as a proxy, 
recent approaches (e.g., [8, 17, 18]) extract features from changes in 
HTML structures or JavaScript attributes to detect tracking-related 
resources. However, these approaches cannot be deployed across di-
verse platforms or devices as they require an instrumented browser 
to perform their dynamic code analysis. This leads to fragmentation 
in security management as users should individually consider their 
settings to fnd a method viable for their own protection. 

On the other hand, network operators in a security-critical or-
ganization (e.g., enterprise or military) may attempt a holistic ap-
proach that detects trackers by performing Domain Name System 
(DNS) fltering or Deep Packet Inspection (DPI) against all web traf-
fc inside the network. Their methods are, however, limited in accu-
racy as DNS-based approaches (e.g., [2, 24]) are coarse-grained and 
subject to evasions equal to those of URL-based approaches. More-
over, extracting features from HTTP headers or payloads with DPI 
(e.g., [15, 28]) is not only privacy-intrusive but inefective against 
encrypted trafc, making these approaches impractical in today’s 
web environment where 79.8% of all websites use HTTPS as a de-
fault [34]. Overall, we are in a dilemma over putting the task of 
tracker detection in charge of each user for better performance or 
managing it as a whole for wider applicability. 

To address this issue, we present Net-track, a novel ap-
proach to managing a secure web environment through platform-
independent, encryption-agnostic detection of trackers. Utilizing 
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Figure 1: Simplifed overview of a cookie-based tracker. 

only side-channel data from network trafc that are still available 
when encrypted, Net-track accurately detects trackers network-
wide, irrespective of user’s browsers or devices but does not re-
quire inspecting packet payloads or resources fetched from the web 
server. This prevents user data from leaking to tracking servers in 
a privacy-preserving manner. Although there have been diverse 
studies on the potential of encrypted trafc analysis and its various 
usage (e.g., [3, 26, 30]), our work is the frst attempt to apply this 
methodology in the feld of tracker detection. 

Our motivation stems from the observation that trackers’ intrin-
sic functionalities (i.e., collecting and sending user data) generate 
distinctive trafc patterns that can be captured by analyzing their 
packet metadata: the length and direction of packets. By compara-
tively analyzing the client-server interaction for both benign trafc 
and tracker trafc, we elicit a set of features that make trackers 
distinguishable from benign trafc. The resulting three types of 
features: statistical features, box features, and sequential features, 
are incorporated into training a machine learning (ML) classifer to 
identify tracker trafc among the diverse trafc traces generated 
by users regardless of their browsers, applications, or devices. 

We measure the statistics from trafc traces with their similar-
ities to study the feasibility of utilizing side-channel data leaked 
from network trafc in detecting trackers. We test Net-track with 
diverse ML algorithms to evaluate its performance and further 
study its potential. Our results show that Net-track is able to detect 
trackers with 94.02% accuracy and can even discover new track-
ers yet unrecognized by existing flter lists. Besides, Net-track still 
maintains its performance when using only a portion of each traf-
fc trace, showing its potential for real-time detection. The major 
contributions of this work are summarized as follows. 

• To our best knowledge, we are the frst to utilize only side-
channel data in detecting trackers to achieve better user 
privacy that can be managed network-wide. 

• We propose a platform-independent, encryption-agnostic so-
lution to overcome the limitations of the previous approaches 
while mitigating the risk of privacy intrusion caused by in-
specting packet payloads or resources. 

• We provide an empirical analysis that shows the distinctions 
between benign trafc and tracker trafc in their trafc pat-
terns and present a set of features that fully capture trackers’ 
distinctive characteristics. 

• We show that Net-track not only detects trackers with 94.02% 
accuracy but can discover new trackers that are not on the 
existing flter lists, maintaining its performance while using 
only the frst few packets of each trafc trace. 

2 BACKGROUND AND RELATED WORK 
In this section, we briefy discuss the mechanisms of trackers’ web 
tracking techniques with the previous studies on tracker detection 
and trafc classifcation. 

2.1 Trackers: Types and Mechanisms 
Third-party trackers utilize diverse tracking methods to identify 
each user and collect user data such as browsing history, location, or 
browser/device properties. Stateful tracking stores information on 
the user’s device to recognize each user. Fig. 1 shows an overview of 
a cookie-based tracker, which is the most prevalent form of stateful 
tracking that collects users’ browsing history through cross-site 
tracking. When the user frst visits News.com, a third-party tracker, 
embedded in the website as an advertisement, sets a cookie in the 
user’s browser. The cookie’s value contains a unique identifer so 
that when the user later visits Social.com, the tracker can identify the 
user and notice that this user has visited News.com and Social.com. 

Stateless tracking, on the other hand, does not require a tracker to 
store information on user devices. Instead, they collect device/user-
specifc information that can re-identify users when combined, such 
as OS/browser properties, user confguration, or browser extensions. 
Despite the diference in detail, these tracking methods all collect 
information about the user and send it to their tracking servers. This 
common functionality enables us to capture trackers’ distinctive 
characteristics and utilize them in their identifcation. Details of 
analyzing the trafc patterns of trackers will be shown in Section 3. 

2.2 Existing Studies on Tracker Detection 
With the increasing attention to online privacy, many attempts have 
been made to combat trackers through their detection, leveraging 
diverse properties gained during the page load such as the structure 
and behavior of JavaScript code units or features of network re-
quests. We note that our goal is not to depreciate the contributions 
of these approaches, but rather to suggest a diferent approach that 
can be used as a complement or as a viable alternative in today’s 
web environment. We provide a thorough summary of the existing 
approaches to tracker detection in Appendix A. 

(1) URL-based Detection: The most widely used methods adop-
ted by privacy-sensitive users are content-blockers such as AdBlock 
Plus [1], uBlock Origin [33], and Ghostery [14]. These methods de-
pend on manually curated flter lists, identifying tracking domains 
with URL patterns matching the predefned ruleset. While these 
methods are lightweight and easy to deploy, they are easily evaded 
by changing domains through domain generation algorithms (DGA) 
or proxies. Although Yu et al. [37] enabled a more robust detection 
by identifying suspicious data elements in third-party requests, 
their method still requires a tracker to use a consistent domain. 

(2) JavaScript-based Detection: Wu et al. [36] and Ikram et al. 
[16] analyzed the static features of JavaScript code units to detect 
tracking JavaScript programs. As these are vulnerable to obfusca-
tion techniques [20], recent approaches (e.g., [8, 17, 18]) perform 
dynamic code analysis to extract syntactic, semantic features from 
JavaScript executions. While these approaches are efective in de-
tecting trackers and browser fngerprinting, they require a modifca-
tion of Blink and V8 in the Chromium browser or an instrumented 
Firefox to log and attribute JavaScript behavior to document object 
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model (DOM) modifcations and other network requests, limiting 
their applicability across diverse platforms. Net-track does not re-
quire user-level modifcations for its real-world application and is 
complementary to these existing approaches. We can perform a 
more robust detection by combining them as a layered defense. 

(3) Network-based Detection: Aside from the DNS-based ap-
proaches (e.g., [2, 24]), which simply perform DNS fltering and thus 
sufer from the same limitations of those URL-based approaches, 
several other approaches utilized features from HTTP trafc or the 
relationship between tracking domains. Gugelmann et al. [15] and 
Shuba et al. [28] proposed using a set of features obtained by in-
specting HTTP headers and payloads (e.g., percentage of third-party 
requests or requests with cookies, domains in HTTP Referer). While 
their methods can detect trackers regardless of user’s browsers or 
devices, applying them to encrypted trafc (e.g., through TLS prox-
ies), which account for the majority of today’s web trafc, may 
incur high overhead and threats to a man-in-the-middle attack. 
TrackSign [7], on the other hand, detects trackers by identifying 
code fragments shared across tracking domains. Although this can 
efectively discover new trackers through a network-wide anal-
ysis, it needs to fetch the entire resource to compute their code 
fngerprints. Net-track can be seen as a viable alternative to these 
approaches as it is encryption-agnostic and preserves its detection 
accuracy even when using only a part of each trafc trace. 

2.3 Research Eforts on Trafc Classifcation 
There have been various eforts to manage the security of the net-
work by classifying network trafc with diverse side-channel data 
(e.g., [27, 38]). Anderson et al. [3] detected malware trafc based 
on packet length and TLS handshake metadata, while Taylor et 
al. [30] proposed identifying smartphone apps based on packet 
length and direction. Moreover, several work explored the feasi-
bility of fngerprinting web pages within the same website using 
packet length information [26] or bursts in content distribution 
network (CDN) trafc [35]. There also has been a line of research 
utilizing deep learning in their classifcation. Sirinam et al. [29] 
studied fngerprinting websites against defended Tor trafc based 
on Convolutional Neural Network (CNN). On the other hand, Cui et 
al. [10] utilized Long Short-Term Memory (LSTM) as well as CNN 
to fngerprint websites with imperfect trafc traces, and Chen et al. 
[9] classifed diverse types of trafc using LSTM with a sequence 
of message size as features. In this paper, we leverage only packet 
metadata: the length and direction of packets, in preserving users’ 
privacy against tracker trafc inside the network. 

3 ANALYSIS OF REAL-WORLD TRAFFIC 
We begin by showing the results from studying the diference be-
tween benign trafc and tracker trafc in their trafc patterns. 
Our results show the feasibility of utilizing side-channel data from 
network trafc in distinguishing tracker trafc from benign trafc. 

3.1 Dataset Collection 
We frst collect a real-world trafc dataset by visiting the homepages 
of the top-20k Alexa websites with Chrome browser using Selenium. 
We employ tshark scripts to capture all trafc generated during 
the page load for 120 seconds, in order to ensure that all fows are 

Figure 2: Principal component analysis results of statistical 
values. (a) Analysis of statistics from downlink packets, (b) 
Analysis of the entire statistics. 

fully captured. Note that visiting a single website incurs multiple 
requests to diferent domains as there are various third parties 
engaged in the web page loading process (e.g., CDN, advertisement 
servers, or tracking servers). We then divide the resulting pcap fle 
in terms of connection, i.e., make multiple pcap fles each containing 
a single connection between the client and the domain. This makes 
us capture each client-server interaction with diverse third parties 
as well as with the host of the visiting website. The data collection 
is performed within a period of four weeks, resulting in a dataset 
consisting of about 350k trafc traces. 

We now set the ground truth by labeling each trace as tracker or 
benign based on the requested URL. We use the two most popular 
open-source flter lists: EasyList [11] and EasyPrivacy [12], as our 
flter lists and label each trace based on whether it contains a request 
of which URL matches the rules on any of these flter lists, i.e., 
classifed as tracker by flter lists. We note that while EasyList 
targets both advertisements and trackers, we do not discriminate 
between the two as most domain hosting advertisements also track 
users. It is also worth noting that despite the well-known limitations, 
flter lists are a reasonable source of ground truth when considering 
the time and labor required to build a more accurate, manually 
generated set of ground truth and are therefore still widely used in 
related work. Our fnal labeled dataset consists of 222,009 benign 
trafc traces and 126,664 tracker trafc traces. 

3.2 Statistics from Trafc Traces 
The frst type of trafc features of our interest are the statistical 
values of packet length. As many applications show asymmetric 
statistical properties in the client-to-server (uplink) and server-
to-client (downlink) directions, we divide the sequence of packet 
length from each trafc trace into three types of sequences: the 
length of uplink packets, the length of downlink packets, and the 
length of all packets in the fow. We combine 18 types of statistical 
values computed from each type of sequence, which are motivated 
by Taylor et al. [30], with 8 fow-level features that capture the 
characteristics of the entire fow, resulting in a total of 62 statisti-
cal features. The former 18 values are comprised of the minimum, 
maximum, mean, median absolute deviation (MAD), standard devi-
ation (STD), variance, skew, kurtosis, percentiles (from 10% to 90%), 
and the number of elements in the sequence. Flow-level features 
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Figure 3: Net-track architecture: A workfow overview of network-wide tracker detection using packet metadata. 

comprise the sum and the information entropy of packet length in 
each type of sequence, and the ratio of uplink packets to downlink 
packets in terms of their total length and count. 

For the resulting set of statistical features, we perform princi-
pal component analysis (PCA) to study the overall distribution 
of their values. We reduce the multi-dimensional feature values 
into two principal components and visualize them as a scatter plot 
(Fig. 2). We can observe that for both Fig. 2a and Fig. 2b, traces of 
tracker trafc are more converged than benign trafc which shows 
their wider distribution. We attribute this diference to trackers per-
forming similar functionalities, leading to more distinctive, shared 
patterns in their traces. Benign trafc, on the other hand, lacks 
commonalities compared to trackers as it is diverse in its types as 
well as its applications. We provide additional experimental results 
gained from analyzing real-world trafc traces in Appendix B. 

4 DESIGN OF NET-TRACK 
This section introduces the overall architecture of Net-track along 
with the details of our feature set and its selection process. The 
notations used in this paper are illustrated in Table 1. 

4.1 System Architecture 
The overall workfow of Net-track is depicted in Fig. 3. Net-track 
frst collects real-world trafc traces by monitoring the network 
trafc inside its local network. We note that while we initially cap-
ture the entire trafc generated during the page load and separate 
them into multiple pcap fles when performing our data collection, 
Net-track, when deployed real-world, can monitor every TCP con-
nection to record the length of packets in each fow, generating an 
abstraction of those fows in the form of packet length sequence. 

Net-track then extracts three types of features from the obtained 
packet length sequence: statistical features, box features, and se-
quential features, which fully represent the characteristics of tracker 
trafc. To further exploit the potential of these features in trackers’ 
identifcation, we carry out a series of feature engineering (Section 
4.3). The overall extraction process is summarized as Algorithm 1. 

Finally, all these features are incorporated into training a clas-
sifer that distinguishes tracker trafc from benign trafc. We test 
diverse machine learning algorithms and deep learning models to 
make the best of Net-track’s performance. The resulting classifer is 
applied to unknown trafc traces to label them as benign or tracker. 

Algorithm 1: Feature Extraction Process of Net-track 

Input: Sequence of packets P = (�1, ..., �� ) in the target fow 
Output: Trafc feature vector V 
1: Set empty lists as A, U, D, and S 
2: forall �� ∈ P do: 
3: l ← length(�� ) 
4: A.append(l) 
5: if is_uplink_packet(�� ) then: 
6: U.append(l) 
7: S.append(l) 
8: else: 
9: D.append(l) 
10: S.append(-l) 
11: end 
12: Calculate STAT each for U, D and A 
13: Calculate BOX for both U and D with bin size as 25 

and maximum length as 1500 
14: BOX ← pca_reduction(BOX, n_components=20) 
15: SEQ ← slice(S, begin=0, end=15) 
16: V ← concat(STAT, BOX, SEQ) 
17: return V 

4.2 Experimental Setup 
To select the feature set that can fully exploit the potential of Net-
track, we perform a series of preliminary evaluations. We study the 
efect of the changes in features on the performance of Net-track 
in terms of accuracy and training time. We choose the Random 
Forest (RF) classifer implemented in Scikit-learn [23] as our ML 
algorithm. To prevent the process of this feature selection from 
afecting the evaluation of Net-track’s fnal performance, we split 
the entire dataset into 20% validation set and 80% test set and use 
only the validation set during the feature selection process. Further, 
to mitigate the impact of dataset partitioning, we apply 10-fold 
cross-validation over our validation set, dividing it into 10 equally-
sized subsets and using one part as the testing set with the rest as 
the training set. After 10 rounds of iteration, we use the average as 
the fnal result. The machine used in this experiment has a 10-core 
Intel i9-7900X CPU, GeForce GT 1030 GPU, 32 GB RAM, 4 TB hard 
disk, and is installed with an Ubuntu 18.04 OS. 
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Figure 4: Efect of statistical features on 
the performance of Net-track. 
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Figure 5: Efect of PCA on box features 
on the performance of Net-track. 

5 10 15 20 25 30 35 40 45 50 55 60 73
Length of Sequential Featu es

87.5

88.0

88.5

89.0

89.5

90.0

90.5

A
cc

u 
ac

y 
(%

)

Accu acy
T aining Time 2.0

2.5

3.0

3.5

4.0

4.5

5.0

T 
ai

ni
ng

 T
im

e 
(s

)

Figure 6: Efect of the length of sequen-
tial features on the performance of Net-
track. 

Table 1: List of Notations. 

Notation Meaning 

A Packet length sequence of all packets 

U Packet length sequence of uplink packets 

D Packet length sequence of downlink packets 

S Signed sequence of packet length 

STAT Feature vector of statistical features 

BOX Feature vector of box features 

SEQ Feature vector of sequential features 

4.3 Selecting the Feature Set 
We now present the features that Net-track utilizes in its detection. 
Based on the original packet length sequence (A), we build three 
additional sequences: U, D, and S, and extract our features from 
these sequences. For S, its sign indicates the direction of the packet: 
positive for uplink and negative for downlink. We explain more 
about our design choices in Appendix C. 

(1) Statistical Features: The frst type of features, statistical 
features, are computed from U, D, and A as discussed in Section 3.2, 
extracting 18 features from each sequence with 8 fow-level features 
from the entire fow. We quantify the contribution of each feature 
with feature importance gained when building an RF classifer based 
on Gini impurity. Fig. 7 shows the top 15 features that contribute 
most to identifying trackers in our dataset. The prefx ‘u_’ and ‘d_’ 
each denotes the features computed from U and D, respectively. 
‘perK ’ and ‘fow_size’ each denotes the �0�ℎ percentile and the sum 
of packet length in the sequence. We can see that several features 
contribute more than others, although not greatly. 

Motivated by the result, we initially tried using certain features 
with their contribution over a certain threshold, expecting to reduce 
the feature dimension while preserving the accuracy. Fig. 4 shows 
the result when using statistical features with top-k importance. 
Surprisingly, we observe that while the classifcation accuracy grad-
ually increases, this does not apply to the training time. Using the 
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Figure 7: Top 15 statistical features that contribute most to 
the detection of trackers on our dataset. 

entire 62 statistical features showed the highest accuracy with its 
training time similar to or even lower than the case of using a 
smaller number of features. According to the result, we add all 
statistical features to our feature set. 

(2) Box Features: We then extract box features, which are the 
distribution of packet length counted in terms of each bin. For each 
trafc trace, each uplink (downlink) packet in the fow is classifed 
into equally sized bins with a size of 25 according to its length. A 
packet longer than 1500 bytes is counted as the 61st bin. This results 
in a 61-dimensional feature vector for each U and D, a total of a 
122-dimension. As box features are initially too sparse to be used 
in their original form, we perform PCA with a diferent number of 
principal components to reduce their dimensionality. 

In Fig. 5, Using N components indicates reducing the box features 
into a N -dimensional vector. We can see that while increasing the 
number of components leads to higher accuracy, it takes nearly 
double the training time to get an enhancement of less than 1%p. 
This is because increasing the number of components does not 
necessarily lead to an accurate classifcation as the variance of 
the dataset is concentrated only on the frst few components. A 
latecomer may have a negligible efect, i.e., contribution, on the 
detection of trackers. Based on the result, we use 20 components 
as it shows moderate accuracy with a shorter training time. 

(3) Sequential Features: The last type of features are the sequen-
tial features, which denote the signed sequence of packet length 
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Table 2: Hyperparameters of ML Algorithms. 

Classifers Hyperparameters 

DT 
criterion=‘entropy’, max_depth=None, 

max_features=None 

k-NN n_neighbors=1, metric=‘minkowski’, p=1 

MLP hidden_layer_sizes=[256,256,256], activation=‘relu’ 

RF 
criterion=‘gini’, max_depth=None, 

max_features=‘sqrt’, n_estimators=55 

(S). The main factor of our consideration is their length, i.e., the 
length of S. Starting from 5, we increase the length with a step 
size of 5 until 60 and then 73, which is the 95�ℎ percentile of the 
length of all S in our dataset. As packet length sequences are in 
arbitrary lengths, we pad shorter sequences by appending zeros to 
them and truncate the longer ones. The results of our experiment 
are shown in Fig. 6. The accuracy and training time when using a 
packet sequence of length 5 are 76.11% and 0.9989 s, respectively. 

We observe that while the accuracy increases until the length 
of sequential features becomes 15, it continues to drop when it 
becomes longer, albeit with a longer training time. We attribute this 
result to the length of traces, of which the median is shorter than 
20 for both benign trafc and tracker trafc. Also, for the average 
length of traces, benign trafc and tracker trafc each show an 
average of 29.32 and 18.31. Note that traces of tracker trafc are 
generally shorter as they convey less content than benign trafc. 
When the length of sequential features becomes longer, there comes 
more S padded with zeros. This negatively impacts the classifcation 
as there are more null-valued features in the feature set. According 
to our results, we set the length of sequential features to 15. 

5 PERFORMANCE EVALUATION 
This section presents the results of our evaluation, which is de-
signed to answer the following four key research questions: (1) how 
accurate is Net-track in detecting trackers with only side-channel 
data? (2) how efective is Net-track in discovering trackers that 
are not on the flter lists? (3) how well can Net-track preserve its 
performance when using only a part of each trafc trace? and (4) 
can deep learning enhance the performance of Net-track? 

Our evaluation is performed in the same setting as discussed in 
Section 4.2, but by applying 10-fold cross-validation on the test set. 
We compare our predictions made by Net-track with the labels de-
rived from the flter lists described in Section 3.1. We then evaluate 
how accurately Net-track can reproduce those labels and perform 
a manual analysis on cases where those results collide, fnding that 
Net-track can identify many new trackers missed by existing flter 
lists. Our ML algorithms are implemented in Scikit-learn [23] and 
the deep learning models are implemented in Python using Keras 
with Tensorfow as the back-end [19]. We perform grid search over 
the validation set to tune the hyperparameters. For the run time, 
the inference time is averaged by the number of traces in the testing 
set. We note that each testing set is a 10% subset of the entire test 
set as we perform 10-fold cross-validation in our evaluation. 

Figure 8: Detection performance of Net-track with diferent 
ML algorithms. 

Table 3: Run time of Net-track with diferent ML algorithms. 

DT k-NN MLP RF 

Training Time (s) 27.7080 0.0516 1638.53 73.3319 

Inference Time (ms) 0.0011 12.813 0.0209 0.0163 

5.1 Detection Performance of Net-track 
Net-track incorporates the extracted features into training an ML 
classifer to perform its detection. We choose four ML algorithms 
that are widely used in related work: Decision Tree (DT), k-Nearest 
Neighbors (k-NN), Multi-layer Perceptron (MLP), and Random For-
est (RF), and comparatively analyze their performance. Table 2 
shows the details of our hyperparameters selection. Along with the 
accuracy used in Section 4.3, we use precision, recall, and F1-score 
as our metrics, which are defned as: 

������������� 
��������� = 

������������� + �������������� 
(1) 

� ������������ 
������ = 

������������� + �������������� 
(2) 

��������� ∗ ������ 
� 1-����� = 2 ∗ 

��������� + ������ 
(3) 

The overall results of our experiment are shown in Fig. 8 and 
Table 3. We can observe that while DT is faster than other ML 
algorithms (except for k-NN that simply ‘remembers’ the training 
data in its training stage), its detection performance is the worst, 
with 90.2% accuracy and 86.55% F1-score. On the other hand, k-NN 
and MLP show a somewhat opposite result, although with similar 
levels of performance with about 92.5% accuracy. While k-NN is the 
slowest in making its inference, MLP takes the longest to train its 
model. RF is the highest both in its accuracy (94.02%) and precision 
(95.12%), accompanied by a moderate training/inference time. As RF 
consists of multiple DTs and makes its fnal prediction based on the 
probability estimate across the trees, it is robust to overftting and 
thus results in better performance. We also note that we can further 
reduce the run time of RF and k-NN through multiprocessing. When 
we set n_jobs to 10, the inference time is reduced to 7.209 ms and 
0.0054 ms for k-NN and RF, respectively, while maintaining their 
detection performance. 
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Table 4: Results of manual analysis on cases which Net-track 
classifed as tracker while flter lists labeled as benign. 

Trafc Type # 

Tracker 
Type 1 38 (19 %) 

Type 2 15 (7.5 %) 

Type 3 16 (8 %) 

Benign 131 (65.5 %) 

The above results show that Net-track has high precision at 
95% in detecting trackers’ privacy-intrusive behaviors. With Net-
track’s high precision, we can perform pinpoint blockage of trackers 
without impeding the benign. Filter lists fail to do so due to their 
over-blocking of resources, blocking entire domains or URLs in a 
given ruleset. Iqbal et al. [18] found out that resources of the same 
type (e.g., scripts) fetched from the same domain may show diferent 
functionalities depending on the context they are requested. Such 
cases are recklessly blocked by flter lists and increase the number 
of ‘False Negative’, i.e., the number of cases flter lists labeled as 
tracker while Net-track classifed as benign, making Net-track’s 
recall relatively lower than its precision. 

What also makes these results worthwhile is that Net-track’s 
performance is attained without analyzing resources loaded at the 
application layer nor inspecting contents in the HTTP payloads. By 
leveraging only side-channel data from network trafc, Net-track 
achieves a level of accuracy comparable to other approaches. We 
will discuss more on our future aim to develop Net-track in Section 
6. Based on the overall results, we choose RF as our classifer. We 
note that the results in the following Section 5.2 and Section 5.3 are 
obtained using our RF classifer. 

5.2 Discovering New Trackers 
In this section, we show how well Net-track can discover new 
trackers based on its learning and can further address flter lists’ 
limitations. As flter lists consist of a set of crowdsourced rules 
generated by human experts, which are the results of their manual 
analysis on millions of websites, it is hard for those flter lists to 
identify new tracking services or react to evasions (e.g., domain 
variants) in a timely manner. Net-track gives a hand with this 
arduous struggle for privacy. 

We perform a case study on 200 samples of randomly selected 
trafc traces that Net-track classifed as tracker while labeled as 
benign by flter lists. After analyzing their client-server interaction 
and the fetched resources, we label each trafc trace as tracker 
trafc if it corresponds to any of the following criteria: 

• Type 1: This type of trafc fetches advertisements (ads) 
from their ad servers. As stated in Section 3.1, there is no 
clear distinction between ads and tracking resources as most 
domain hosting ads also track users by identifying users 
through cookies or sending uid with their requests. 

• Type 2: This type of trafc downloads tracking-related 
JavaScript fles, which directly set cookies in browsers or 
perform device fngerprinting to collect user information. 
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Figure 9: Detection performance of Net-track when using 
only the frst n packets. 

• Type 3: Initiated by tracking pixels or tracking scripts, this 
type of trafc communicates with third-party tracking ser-
vices to send information to their servers. For example, send-
ing the user’s browsing history, location, or measurements 
gained using browser API in the form of parameters or pay-
loads of HTTP GET/POST methods. 

We note that as many of these tracker trafc show ‘mixed’ features 
of the above, it is hard to strictly group them in each category. 
Therefore, we only consider their main functionality and show the 
distribution of tracker trafc according to their type. Table 4 shows 
the details of our analysis results. 

Our results demonstrate that Net-track can efectively detect 
trackers that are not on the existing flter lists. This also further 
reinforces Net-track’s precision (discussed in Section 5.1) as a con-
siderable portion (34.5%) of those ‘detection errors’ were indeed 
trackers that have not yet been discovered. By analyzing these 
newly detected trackers and the existing flter lists, we fnd that 
EasyList applies to mc.yandex.ru but not to mc.yandex.com. It also 
blocks adtarget.me but not adtarget.com.tr, as these flter lists are 
subject to domain changes. Net-track also identifes tracking be-
haviors missed by existing flter lists such as downloading tracking-
related script (conversations-embed.js) from usemessages.com or 
communicating with third-party tracking services, sending infor-
mation to subdomains of drift.com (e.g., targeting.api, metrics.api) or 
sharing information between tracking services, i.e., cookie syncing, 
through x.dlx.addthis.com. It also detects a script (afterpay-1.x.js) 
on afterpay.com. Although afterpay.com is not essentially a tracking 
domain, its script collects information such as city, country, device 
manufacturer/model, and OS name/version at the user’s browser. 

Besides, when investigating the newest version of the flter lists 
at the time of this writing, we observe that 37.68% of these newly 
found trackers are still unenrolled. We note that we use flter lists 
that are up to date at the moment of data collection in setting the 
ground truth and training our model, and it has passed more than 
ten months since then. Although given enough time, these manually 
curated flter lists still fail to adapt to changes in trackers and their 
evasions, as they are too slow to keep pace with the fast-changing 
nature of third-party trackers. With Net-track, we can provide 
these flter lists with a list of candidates that Net-track marked as 
suspicious, signifcantly reducing their scope of manual analysis 
and help complement these flter lists much more efciently. 
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Table 5: Hyperparameters selection for LSTM. Table 6: Detection performance of Net-track with LSTM. 

Hyperparameters Search Range Final 

Input Units [50, ..., 300] 150 

Hidden Layer Units [64, ..., 256] 64 

Activation [tanh, relu] tanh 

Dropout [0.1, ..., 0.5] 0.3 

Batch Size [32, ..., 512] 256 

Training Epochs [10, ..., 100] 50 

5.3 Potential for Real-time Detection 
In our previous experiments, we extract features from all packets in 
each trafc trace. But when assuming a more realistic environment 
where Net-track performs real-time classifcation of network trafc, 
it should be able to detect trackers in the midst of the connection, 
i.e., use as few packets as possible in making its decision. Therefore, 
to study Net-track’s potential for real-time detection, we train our 
model with the features extracted only from the frst n packets of 
each trafc trace and evaluate its performance. 

Fig. 9 shows the details of the results. We can observe that except 
for the case of using the frst 5 packets, Net-track maintains its 
accuracy of over 93%. It shows the lowest accuracy at 93.62% when 
using the frst 15 packets and the highest accuracy at 93.94% when 
using the frst 73 packets of each trafc trace. We note that the 
average length of tracker trafc in our dataset is 18.31. While both 
benign and tracker trafc show similar behavior patterns in the 
early stage of connection (frst 5 packets), Net-track can extract 
informative features with a minimum of 10 packets as most trackers 
are amidst connection. Our results demonstrate that Net-track can 
perform its accurate detection even with insufcient data, showing 
its ability to identify tracker trafc within a short time after it is 
generated, instead of waiting for each fow to complete. 

5.4 Net-track with Deep Learning 
This section further explores the beneft deep learning might bring 
to the performance of Net-track. Among the various deep learning 
models, we choose LSTM, a specifc type of recurrent neural net-
work that specializes in classifying time-series data such as speech, 
video, or network trafc and is thus widely used in related work. 

Table 5 shows the list and the values of the hyperparameters for 
our LSTM model. An input instance for our LSTM-based classifer 
is the signed sequence of packet length (S) from each trafc trace. 
For the length of each sequence, we use 15 (length of sequential 
features), 25 (average length of traces), and 73 (95�ℎ percentile in the 
length of traces). Table 6 shows the details of our evaluation results. 
We can observe that our LSTM-based classifer performs similarly 
to other ML-based classifers, but with a longer run time. To be 
more specifc, while LSTM shows similar accuracy (93.50% when 
using a sequence of length 25) with our RF-based classifer (94.02%), 
it takes 11 times longer than RF in making its inference. Our results 
show that although deep learning may also lead to a comparable 
performance to other approaches (with a proper model and a careful 
selection of its hyperparameters), its intrinsic shortcomings in time 
complexity make it less suitable for making a timely decision. 

Sequence 
Length 

Accuracy Precision Recall Train 
(s) 

Inference 
(ms) 

15 0.9287 0.9196 0.8808 771.03 0.1701 

25 0.9350 0.9262 0.8922 923.80 0.1783 

73 0.9349 0.9309 0.8867 1969.83 0.2274 

6 DISCUSSION 
For further study, we aim to apply Net-track as a back-end system 
in a layered architecture, acting as a source of information that 
feeds other systems. For example, network managers in an enter-
prise network can initially flter out tracker trafc in their local 
network using Net-track. When Net-track identifes tracker trafc 
from unknown sources (whether in real-time or using the entire 
fow), it can update frewall rules or tracking domain lists to block 
subsequent fows, protecting other users of the network. Users who 
are concerned more about their privacy may then equip additional 
browser-based defenses (e.g., [1, 14, 33]). 

Also, when considering its real-world application, Net-track may 
be afected by changes in trafc characteristics. For example, as Net-
track utilizes distinct properties that tracker trafc has regarding 
its packet length sequence, its features may be compromised by ob-
fuscation in trafc patterns induced by dummy packets or changes 
in packet length. Addressing this challenge will be explored in our 
future work. 

We can further enhance Net-track’s performance by retraining 
its classifer. The accuracy of the flter lists greatly afects Net-
track’s performance as Net-track uses them to label its training 
data as tracker or benign. As discussed in Section 5.2, Net-track can 
help complement these flter lists. This in turn improves Net-track 
as we can retrain Net-track by re-labeling its training data with 
the enhanced flter lists. In fact, when we use the newest flter lists 
at the time of writing in setting the ground truth and retrain our 
model, we observe that our RF classifer shows a 4%p increase in 
recall while maintaining its accuracy and precision. 

7 CONCLUSION 
In this paper, we proposed a novel approach to tracker detection 
called Net-track, which can manage a secure, tracking-free web 
by utilizing only side-channel data leaked from network trafc 
in detecting trackers network-wide, independently of the user’s 
browsers or devices. Our method is encryption-agnostic and does 
not inspect contents in packet payloads or resources loaded at 
the application layer, preventing leakage of user data to tracking 
servers in a privacy-preserving manner. The experimental results 
demonstrated that Net-track can identify tracker trafc among the 
diverse trafc traces with 94.02% accuracy and can also discover 
many new trackers that are not recognized by existing flter lists. 
Moreover, Net-track showed its potential for detecting trackers 
in real-time, preserving its accuracy while using only the frst n 
packets of each trafc trace. Our future work aims to incorporate 
Net-track into a back-end system that can block trackers in real-
time based on Net-track’s discovery of new, unknown trackers. 
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A SUMMARY OF THE EXISTING WORK 
Table 7 shows the strengths and weaknesses of existing work along 
with the ones of Net-track. Although there have been diverse ap-
proaches each leveraging its distinct properties, we note that there 
is no ‘silver bullet’ in the feld of tracker detection, as they each suf-
fer from their own limitations. By leveraging only packet metadata, 
Net-track is complementary to these approaches and can work as a 
basis of privacy protection that operates at the back end, enabling 
more precise detection of trackers when combined. 

B ANALYZING FEATURES FROM PACKET 
LENGTH 

We further study the distinctions between benign trafc and tracker 
trafc in terms of packet length, analyzing their distribution and 
measuring the similarity between those packet length sequences. 

B.1 Distribution of Packet Length 
To analyze the diference in the distribution of packet length be-
tween benign trafc and tracker trafc, we keep a count of each 
bin to which the length of each packet in the fow belongs, with 
the bin size as 25 and the maximum length as 1500 (e.g., any packet 
with length in the range [0,25) is counted as the frst bin, [25,50) 
counted as the second). By normalizing the count of each bin with 
the total number of uplink (downlink) packets in the fow, we get 
the distribution of packet length for each trafc trace. For each bin, 
we compute the mean of its normalized count between all traces 
belonging to the same trafc type. The results are shown in Fig. 10. 

We can observe that for both uplink packets (Fig. 10a) and down-
link packets (Fig. 10b), the distribution of packet length difers 
according to the trafc type. What is noteworthy is that simi-
lar to the results in Fig. 2a, the distribution of downlink packets 
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Table 7: Summary of the existing work on tracker detection. 

Properties Ref. Year Advantages Disadvantages 

URL Request 
[1, 14, 33] 2022 - Lightweight and easy to deploy 

- Support real-time detection 
- Susceptible to domain changes 
- Require specifc browser to install[1, 14, 33] [37] 2016 

DNS Query [2, 24] 2022 
- Does not require installation on each device 
- Support real-time detection 

- Susceptible to domain changes 
- Does not work against encrypted DNS 

Code Structure 
[36] 2016 - Robust to domain changes 

- Does not require specifc browser to deploy 
- Susceptible to code obfuscation 
- Unable to detect in real-time [16] 2017 

JavaScript 
Behavior 

[18] 2020 - Robust to domain changes and code obfuscation 
- Support real-time detection[18] 

- Depend on specifc browser functions 
- Require modifying the base browser to deploy [8, 17] 2021 

HTTP 
Header/Payload 

[15] 2015 - Does not require installation on each device 
- Support real-time detection[28] 

- Inspecting payloads may raise a privacy issue 
- Does not work against encrypted trafc [28] 2018 

Code 
Fingerprint 

[7] 2021 - Robust to domain changes 
- Does not require specifc browser to deploy 

- Require downloading the entire fle 
- Unable to detect in real-time 

Packet 
Metadata 

This 
Work 

2023 - Platform-independent and encryption-agnostic 
- Can detect trackers with partial traces 

- May be afected by changes in trafc charact-
eristics (e.g., packet size randomization) 
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Figure 10: Distribution ratio of packet length. Packets are 
aggregated with their length into an interval size of 25. (a) 
Uplink packets, (b) Downlink packets. 

shows a greater diference than that of uplink packets. This is be-
cause trackers focus more on sending information to their tracking 
servers rather than downloading resources, while most benign traf-
fc fetches web contents or other resources during the page load, 
generating downlink packets with larger payloads. Thus, the length 
of downlink packets leads to a more noticeable distinction between 
benign trafc and tracker trafc. 

B.2 Similarity between Packet Sequences 
In addition to the three types of sequences discussed in Section 
3.2, we build a signed sequence of packet length, of which the sign 

Benign1 Benign2 Benign3 Benign4 Benign5 Tracker1 Tracker2 Tracker3 Tracker4 Tracker5

Tr
ac
ke
r5

Tr
ac
ke
r4

Tr
ac
ke
r3

Tr
ac
ke
r2

Tr
ac
ke
r1

B
en
ig
n5

B
en
ig
n4

B
en
ig
n3

B
en
ig
n2

B
en
ig
n1

1.3e+04 1.4e+04 9.3e+03 9.8e+03 1.5e+04 2.1e+03 1.5e+03 1.2e+03 2.1e+03 0

1.7e+04 1.9e+04 1.2e+04 1.4e+04 1.9e+04 5 6.6e+02 1.2e+03 0 2.1e+03

1.2e+04 1.5e+04 8.7e+03 1e+04 1.5e+04 1.2e+03 6.2e+02 0 1.2e+03 1.2e+03

1.9e+04 2e+04 1.4e+04 1.5e+04 2.2e+04 6.6e+02 0 6.2e+02 6.6e+02 1.5e+03

1.7e+04 1.9e+04 1.2e+04 1.4e+04 1.9e+04 0 6.6e+02 1.2e+03 5 2.1e+03

3.1e+03 7e+03 3.7e+03 2.5e+03 0 1.9e+04 2.2e+04 1.5e+04 1.9e+04 1.5e+04

1.3e+03 5.5e+03 1.8e+03 0 2.5e+03 1.4e+04 1.5e+04 1e+04 1.4e+04 9.8e+03

1.3e+03 5.7e+03 0 1.8e+03 3.7e+03 1.2e+04 1.4e+04 8.7e+03 1.2e+04 9.3e+03

5.5e+03 0 5.7e+03 5.5e+03 7e+03 1.9e+04 2e+04 1.5e+04 1.9e+04 1.4e+04

0 5.5e+03 1.3e+03 1.3e+03 3.1e+03 1.7e+04 1.9e+04 1.2e+04 1.7e+04 1.3e+04

0

2500

5000

7500

10000

12500

15000

17500

20000

Figure 11: Similarity between packet length sequence of traf-
fc traces measured in terms of DTW distance. A closer dis-
tance indicates higher similarity. 

indicates the direction of the packet: positive for uplink and negative 
for downlink. We then measure the similarity between trafc traces 
in terms of the distance between those signed sequences. As trafc 
traces are with an arbitrary length, we use dynamic time warping 
(DTW) [25] to measure their distance. Fig. 11 shows the similarity 
between traces that are randomly selected each from benign trafc 
and tracker trafc. We can observe that traces belonging to the same 
type show a higher similarity between each other while showing a 
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larger distance with traces in another type. It is worth noting that 
the similarity between tracker trafc is relatively more robust than 
that of benign trafc. As with the result in Section 3.2, traces of 
tracker trafc continue to show a convergence of their features, 
indicating the presence of their commonalities in patterns that 
make them distinguishable from benign trafc. 

C EXPLORING CANDIDATE FEATURES 
Feature engineering of Net-track involved examining myriads of 
approaches [27, 38] and measuring their efectiveness. We initially 
study diverse features that can be obtained from packet metadata. 
These include counting the number of uplink/downlink packet 
blocks (i.e., when packets are consecutively transmitted to the same 
direction) or accumulating packet length of the original packet 
length sequence for sequence abstraction. We also investigate 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

relational features such as the magnitude, radius, covariance, and 
correlation coefcient of packet length in each trace. However, the 
efect of these features on the performance of Net-track falls short 
of our expectations, leading to our fnal feature set that can fully 
capture the distinctive characteristics of tracker trafc: statistical, 
box, and sequential features. 

We further refne the resulting feature set by complementing 
our dataset with neighborhood-based collaborative fltering, which, 
however, only brings marginal enhancements. When the number 
of packets is small, there exist cases where some feature values are 
unavailable. For each missing feature value, we select three traces 
based on their similarity with the target trace and use their average 
as a prediction. Using this augmented dataset only brings negligible 
impact on Net-track’s detection. Therefore, we choose to use our 
dataset in its original form. 
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